Streaming Kernelization
نویسندگان
چکیده
Kernelization is a formalization of preprocessing for combinatorially hard problems. We modify the standard definition for kernelization, which allows any polynomial-time algorithm for the preprocessing, by requiring instead that the preprocessing runs in a streaming setting and uses O(poly(k) log |x|) bits of memory on instances (x, k). We obtain several results in this new setting, depending on the number of passes over the input that such a streaming kernelization is allowed to make. Edge Dominating Set turns out as an interesting example because it has no single-pass kernelization but two passes over the input suffice to match the bounds of the best standard kernelization.
منابع مشابه
Kernelization: New Upper and Lower Bound Techniques
In this survey, we look at kernelization: algorithms that transform in polynomial time an input to a problem to an equivalent input, whose size is bounded by a function of a parameter. Several results of recent research on kernelization are mentioned. This survey looks at some recent results where a general technique shows the existence of kernelization algorithms for large classes of problems,...
متن کاملRecent developments in kernelization: A survey
Kernelization is a formalization of efficient preprocessing, aimed mainly at combinatorially hard problems. Empirically, preprocessing is highly successful in practice, e.g., in state-of-the-art SAT and ILP solvers. The notion of kernelization from parameterized complexity makes it possible to rigorously prove upper and lower bounds on, e.g., the maximum output size of a preprocessing in terms ...
متن کاملParameterized Streaming Algorithms for Vertex Cover
As graphs continue to grow in size, we seek ways to effectively process such data at scale. The model of streaming graph processing, in which a compact summary is maintained as each edge insertion/deletion is observed, is an attractive one. However, few results are known for optimization problems over such dynamic graph streams. In this paper, we introduce a new approach to handling graph strea...
متن کاملPolynomial Kernels for Weighted Problems
Kernelization is a formalization of efficient preprocessing for NP-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number n of items. We answer both questions affirmatively by using an algorithm for compr...
متن کاملGuest Column: Invitation to Data Reduction and Problem Kernelization
To solve NP-hard problems, polynomial-time preprocessing is a natural and promising approach. Preprocessing is based on data reduction techniques that take a problem’s input instance and try to perform a reduction to a smaller, equivalent problem kernel. Problem kernelization is a methodology that is rooted in parameterized computational complexity. In this brief survey, we present data reducti...
متن کامل